

# On Ratliff–Rush closure of modules

# Naoki Taniguchi

Waseda University

### The 39th Japan Symposium on Commutative Algebra

November 17, 2017

| Introduction | Preliminaries | Ratliff–Rush closure of modules | Main Results | Application | References |
|--------------|---------------|---------------------------------|--------------|-------------|------------|
|              |               |                                 |              |             |            |
|              |               |                                 |              |             |            |

# Introduction

Throughout my talk

- A a Noetherian ring
- I, J ideals of A

• 
$$\widetilde{I} = \bigcup_{\ell \ge 0} \left[ I^{\ell+1} :_A I^{\ell} \right]$$
 the Ratliff–Rush closure of  $I$ 

• 
$$\mathcal{R}(I) = A[It] \subseteq A[t]$$
 the Rees algebra of  $I$ 

Note that

• 
$$I \subseteq \widetilde{I}$$
 and  $\widetilde{I} \cdot \widetilde{J} \subseteq \widetilde{IJ}$ 

• 
$$\widetilde{I} \subseteq \overline{I}$$
, if grade<sub>A</sub>  $I > 0$ 

• If  $J \subseteq I$  and J is a reduction of I, then  $\widetilde{J} \subseteq \widetilde{I}$ .

< 行.

| Introduction                | Preliminaries                                | Ratliff–Rush closure of modules                                    | Main Results                                       | Application                               | References           |
|-----------------------------|----------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------|----------------------|
| <b>C</b> .                  |                                              |                                                                    |                                                    |                                           |                      |
| Set F                       | $\operatorname{Proj} \mathcal{R}(I) = \{I\}$ | $P\inSpec\mathcal{R}(I)\mid P$ is a                                | graded ideal, F                                    | $P \not\supseteq \mathcal{R}(I)_+ \}.$    |                      |
| Theorem                     | 1.1 (Goto-N                                  | Matsuoka, 2005)                                                    |                                                    |                                           |                      |
| Let $(A, \mathfrak{m})$     | ) be a two-dii                               | mensional RLR, $\sqrt{I}=1$                                        | m. Then TFAE.                                      |                                           |                      |
| (1) $\tilde{I} =$           | Ī.                                           |                                                                    |                                                    |                                           |                      |
| (2) $\widetilde{I^n} =$     | $=\overline{I^n}$ for $\forall n>$           | 0.                                                                 |                                                    |                                           |                      |
| (3) <i>I</i> <sup>n</sup> = | $=\overline{I^n}$ for $\exists n>$           | 0.                                                                 |                                                    |                                           |                      |
| (4) <i>I<sup>n</sup></i> =  | $=\overline{I^n}$ for $\forall n \gg$        | 0.                                                                 |                                                    |                                           |                      |
| (5) Proj                    | $\mathcal{R}(I)$ is a nor                    | rmal scheme.                                                       |                                                    |                                           |                      |
| (6) R(1                     | ) <sub>P</sub> is normal i                   | for $orall P \in \operatorname{Spec} \mathcal{R}(I) \setminus \{$ | $\mathfrak{M}\}$ , where $\mathfrak{M}$ =          | $=\mathfrak{m}\mathcal{R}(I)+\mathcal{I}$ | $\mathcal{R}(I)_+$ . |
| When this                   | s is the case,                               | $\mathcal{R}(I)$ has FLC, $H^1_{\mathfrak{M}}(\mathcal{R})$        | $(I))\cong \mathcal{R}(\overline{I})/\mathcal{R}($ | I), and                                   |                      |
|                             |                                              | $\mathcal{R}(I)$ is CM $\iff$                                      | $\overline{I} = I.$                                |                                           |                      |
|                             |                                              |                                                                    | < □ > < @                                          | ▶ ★ 圖 ▶ ★ 圖 ▶                             | E 990                |

Main Results

Ratliff–Rush closure of modules

Introduction

Preliminaries

References

Application

| Introduction | Preliminaries | Ratliff–Rush closure of modules | Main Results | Application | References |
|--------------|---------------|---------------------------------|--------------|-------------|------------|
|              |               |                                 |              |             |            |

Question 1.2

Can we generalize Theorem 1.1 to the case of modules?

| Introduction | Preliminaries | Ratliff–Rush closure of modules | Main Results | Application | References |
|--------------|---------------|---------------------------------|--------------|-------------|------------|
|              |               |                                 |              |             |            |

| Contents                          | h. |
|-----------------------------------|----|
| <ol> <li>Introduction</li> </ol>  | I  |
| Preliminaries                     | L  |
| 3 Ratliff-Rush closure of modules | L  |
| Main results                      | L  |
| Opplication                       | J  |

▲ロ▶ ▲圖▶ ▲画▶ ▲画▶ 三回 - のQで

| Introduction | Preliminaries | Ratliff–Rush closure of modules | Main Results | Application | References |
|--------------|---------------|---------------------------------|--------------|-------------|------------|
|              |               |                                 |              |             |            |

# **Preliminaries**

### Setting 2.1

- A a Noetherian ring
- *M* a finitely generated *A*-module
- $F = A^{\oplus r}$  (r > 0) s.t.  $M \subseteq F$

Look at the diagram

э

| Introduction | Preliminaries | Ratliff–Rush closure of modules | Main Results | Application | References |
|--------------|---------------|---------------------------------|--------------|-------------|------------|
|              |               |                                 |              |             |            |

# The Rees algebra $\mathcal{R}(M)$ of M is defined by

$$\mathcal{R}(M) = \operatorname{Im}(\operatorname{Sym}(i)) \subseteq S = A[t_1, t_2, \dots, t_r]$$
$$= \bigoplus_{n \ge 0} M^n.$$

### **Definition 2.2**

For  $\forall n \geq 0$ , we define

$$\overline{M^n} = \left(\overline{\mathcal{R}(M)}^S\right)_n \subseteq S_n = F^n$$

and call it the integral closure of  $M^n$ .

| Introduction | Preliminaries | Ratliff–Rush closure of modules | Main Results | Application | References |
|--------------|---------------|---------------------------------|--------------|-------------|------------|
|              |               |                                 |              |             |            |

# **Proposition 2.3**

For  $\forall n \geq 0$ , we have

$$\overline{M^n} = \left(\overline{(MS)^n}\right)_n.$$

In particular,  $\overline{M} = (\overline{MS})_1 \subseteq F$ .

More precisely,  $x \in \overline{M}$  satisfies

$$x^n + c_1 x^{n-1} + \dots + c_n = 0 \quad \text{in } S$$

where n > 0,  $c_i \in M^i$  for  $1 \le \forall i \le n$ .

| Introduction | Preliminaries                                                                           | Ratliff–Rush clos                            | sure of modules                                  | Main Results                       | Application    | References |
|--------------|-----------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------|------------------------------------|----------------|------------|
|              |                                                                                         |                                              |                                                  |                                    |                |            |
| Lemma 2      | 2.4                                                                                     |                                              |                                                  |                                    |                |            |
|              | that A is a $N_{0} = Q(S)$ . Mo                                                         |                                              |                                                  | $(F/M) < \infty$ .<br>domain, then | Then           |            |
|              |                                                                                         | $\overline{\mathcal{R}(M)}^{Q(\mathcal{R})}$ | $\mathcal{R}^{(M))} = \overline{\mathcal{R}(I)}$ | $\overline{M}$ ) <sup>S</sup>      |                |            |
| Proof.       |                                                                                         |                                              |                                                  |                                    |                |            |
| Look at t    | he diagram                                                                              |                                              |                                                  |                                    |                |            |
|              | $Q(A) \otimes_A S_Y$                                                                    |                                              | $\xrightarrow{\cong}$                            | $Q(A) \otimes_A$                   | 5              |            |
| We get       | Sym <sub>A</sub> (m)                                                                    |                                              |                                                  |                                    |                |            |
| which yiel   | lds                                                                                     |                                              |                                                  |                                    |                |            |
|              | $Q(A)\otimes_{\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | $S \cong Q(A) \otimes$                       | $A_A \operatorname{Sym}_A(M)$                    | $P\cong Q(A)\otimes_A \mathcal{P}$ | R( <i>M</i> ). |            |

| Introduction | Preliminaries | Ratliff–Rush closure of modules | Main Results | Application | References |
|--------------|---------------|---------------------------------|--------------|-------------|------------|
|              |               |                                 |              |             |            |
|              |               |                                 |              |             |            |

### **Proposition 2.5**

Suppose that A is a normal domain and  $\ell_A(F/M) < \infty$ . Let G be a finitely generated free A-module s.t.  $0 \to M \to G$  is exact. Then

$$\overline{\mathcal{R}(M)}^{S} \cong \overline{\mathcal{R}(M)}^{T}$$

where  $T = \text{Sym}_A(G)$ .

# Ratliff-Rush closure of modules

### Setting 3.1

- A a Noetherian ring
- $M \neq (0)$  a finitely generated A-module

• 
$$F = A^{\oplus r}$$
  $(r > 0)$  s.t.  $M \subseteq F$ 

• 
$$\mathcal{R}(M) = \operatorname{Im}(\operatorname{Sym}_{\mathcal{A}}(M) \longrightarrow \operatorname{Sym}_{\mathcal{A}}(F)) \subseteq \operatorname{Sym}_{\mathcal{A}}(F)$$

We set  $\mathfrak{a} = \mathcal{R}(M)_+ = \bigoplus_{n>0} M^n$ ,  $S = \operatorname{Sym}_{\mathcal{A}}(F)$ , and

 $\widetilde{\mathcal{R}(M)}^{S} := \varepsilon^{-1} \left( \mathsf{H}^{0}_{\mathfrak{a}}(S/\mathcal{R}(M)) \right) \subseteq S$ 

where  $\varepsilon : S \to S/\mathcal{R}(M)$ .

Definition 3.2

For  $\forall n \geq 0$ , we define

$$\widetilde{M^n} = \left(\widetilde{\mathcal{R}(M)}^S\right)_n \subseteq S_n = F^n$$

and call it the Ratliff-Rush closure of  $M^n$ .

## Definition 3.3 (Liu, 1998)

Suppose that A is a Noetherian domain. Then  $\widetilde{M}$  is defined to be the largest A-submodule N of F satisfying

• 
$$M \subseteq N \subseteq F$$
,

•  $M^n = N^n$  for  $\forall n \gg 0$ .

### Remark 3.4

These definitions coincide, when A is a Noetherian domain.

| introduction        |                     |                                                                               |                                         | Application | interer eniced |
|---------------------|---------------------|-------------------------------------------------------------------------------|-----------------------------------------|-------------|----------------|
|                     |                     |                                                                               |                                         |             |                |
| Propositi           | on 3.5              |                                                                               |                                         |             |                |
| For $\forall n \ge$ | 0, we have          |                                                                               |                                         |             |                |
|                     | $\widetilde{M^n}$ = | $=\bigcup_{\ell>0}\left[(M^n)^{\ell+1}:_{F^n}(M^n)^\ell\right]$               | $] = \left( \widetilde{(MS)^n} \right)$ | n           |                |
| In particu          |                     |                                                                               | $(\widetilde{\ldots})$                  |             |                |
|                     |                     | $\widetilde{M} = \bigcup_{\ell > 0} \left[ M^{\ell+1} :_F M^{\ell} \right] =$ | $= \left( MS \right)_1.$                |             |                |
| <b>C I</b>          |                     |                                                                               |                                         |             |                |

Main Results

Application

References

Ratliff–Rush closure of modules

### **Corollary 3.6**

Introduction

Preliminaries

Suppose that A is a Noetherian domain. Then

$$\widetilde{M^n} \subseteq \overline{M^n} \subseteq F^n$$

for  $\forall n \geq 0$ . Hence

$$\mathcal{R}(M) \subseteq \widetilde{\mathcal{R}(M)}^{S} \subseteq \overline{\mathcal{R}(M)}^{S} \subseteq S.$$

| Introduction | Preliminaries | Ratliff–Rush closure of modules | Main Results | Application | References |
|--------------|---------------|---------------------------------|--------------|-------------|------------|
|              |               |                                 |              |             |            |
|              |               |                                 |              |             |            |

### **Proposition 3.7**

Suppose that A is a normal domain and  $\ell_A(F/M) < \infty$ . Let G be a finitely generated free A-module s.t.  $0 \to M \to G$  is exact. Then

$$\widetilde{\mathcal{R}(M)}^{S} \cong \widetilde{\mathcal{R}(M)}^{T}$$

where  $T = \text{Sym}_A(G)$ .



## Definition 3.8 (Buchsbaum-Rim, 1964, Hayasaka-Hyry, 2010)

Suppose that  $(A, \mathfrak{m})$  is a Noetherian local ring with  $d = \dim A$ . Then M is called a parameter module in F, if

- $\ell_A(F/M) < \infty$ ,
- $M \subseteq \mathfrak{m}F$ , and

• 
$$\mu_A(M) = d + r - 1$$
.

### **Proposition 3.9**

Suppose that  $(A, \mathfrak{m})$  is a CM local ring with  $d = \dim A > 0$ . Let M be a parameter module in F. Then

$$\widetilde{M} = M.$$

| Introduction | Preliminaries | Ratliff–Rush closure of modules | Main Results | Application | References |
|--------------|---------------|---------------------------------|--------------|-------------|------------|
|              |               |                                 |              |             |            |

### Example 3.10

Let A = k[[X, Y]]. Set

$$M = \left\langle \begin{pmatrix} X \\ 0 \end{pmatrix}, \begin{pmatrix} Y \\ X \end{pmatrix}, \begin{pmatrix} 0 \\ Y \end{pmatrix} \right\rangle \subseteq F = A \oplus A.$$

Then *M* is a parameter module in *F* and  $\widetilde{M} = M$ .

### Example 3.11

Let R = k[[X, Y, Z, W]]. Set

$$A = R/(X, Y) \cap (Z, W), \quad Q = (X - Z, Y - W)A.$$

Then  $\widetilde{Q} = Q$ .

Introduction Preliminaries Ratliff-Rush closure of modules Main Results Application References

# Proposition 3.12 Suppose that $L = Ax_1 + Ax_2 + \dots + Ax_{\ell} \ (\subseteq M)$ is a reduction of M. Then $\widetilde{M} = \bigcup_{n>0} \left[ M^{n+1} :_F (Ax_1^n + Ax_2^n + \dots + Ax_{\ell}^n) \right].$

Corollary 3.13

If L is a reduction of M, then

$$\widetilde{L} \subseteq \widetilde{M}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

| Introduction | Preliminaries | Ratliff–Rush closure of modules | Main Results | Application | References |
|--------------|---------------|---------------------------------|--------------|-------------|------------|
|              |               |                                 |              |             |            |
|              |               |                                 |              |             |            |

# Remark 3.14

The implication

$$L \subseteq M \implies \widetilde{L} \subseteq \widetilde{M}$$

does not hold in general.

# Example 3.15 (Heinzer-Johnston-Lantz-Shah, 1993)

We consider

$$A = k[[t^3, t^4]] \subseteq k[[t]], I = (t^8), \text{ and } J = (t^{11}, t^{12}).$$

Then  $J \subseteq I$ , but  $\widetilde{J} \nsubseteq \widetilde{I}$ .

э

| Introduction | Preliminaries | Ratliff–Rush closure of modules | Main Results | Application | References |
|--------------|---------------|---------------------------------|--------------|-------------|------------|
|              |               |                                 |              |             |            |

The following is the key in our argument.

**Proposition 3.16** Suppose that A is a Noetherian domain. Then the following assertions hold. (1)  $M^n \subset M^n$  for  $\forall n \gg 0$ . (2) Let N be an A-submodule of F s.t.  $M \subseteq N$ . Then TFAE. (i)  $N \subset M$ . (ii)  $M^{\ell} = N^{\ell}$  for  $\exists \ell > 0$ . (iii)  $M^n = N^n$  for  $\forall n \gg 0$ . (iv)  $\widetilde{M} = \widetilde{N}$ . (3)  $\widetilde{\widetilde{M}} = \widetilde{M}$ 

19 / 37

| Introduction | Preliminaries | Ratliff–Rush closure of modules | Main Results | Application | References |
|--------------|---------------|---------------------------------|--------------|-------------|------------|
|              |               |                                 |              |             |            |

Let us note the following.

# Lemma 3.17

Suppose that  $(A, \mathfrak{m})$  is a Noetherian local ring. If  $\overline{M} = F$ , then M = F. In particular, if  $M \neq F$  and A is domain, then  $\widetilde{M} \neq F$ .

| Introduction     | Preliminaries            | Ratliff–Rush closure of modules | Main Results | Application | References |
|------------------|--------------------------|---------------------------------|--------------|-------------|------------|
|                  |                          |                                 |              |             |            |
| In what fo       | llows, we ass            | ume                             |              |             |            |
| ● ( <i>A</i> , r | n) a Noether             | ian local ring with $d=c$       | lim A        |             |            |
| • F =            | $A^{\oplus r}$ $(r > 0)$ |                                 |              |             |            |

• (0)  $\neq M \subsetneq F$  s.t.  $\ell_A(F/M) < \infty$ 

Then  $\exists$  br<sub>i</sub>(M)  $\in \mathbb{Z}$  ( $0 \le i \le d + r - 1$ ) s.t.

$$\ell_A(F^{n+1}/M^{n+1}) = \sum_{i=0}^{d+r-1} (-1)^i \cdot br_i(M) \cdot \binom{n+d+r-i-1}{d+r-2}$$

for  $\forall n \gg 0$ .

The integer  $br_i(M)$  is called the *i*-th Buchsbaum-Rim coefficient of M.

| Introduction | Freiminaries | Katim-Kush closure of modules | Wall Results | Application | References |
|--------------|--------------|-------------------------------|--------------|-------------|------------|
|              |              |                               |              |             |            |
|              |              |                               |              |             |            |
|              |              |                               |              |             |            |
| Set          |              |                               |              |             |            |

$$\mathcal{S} = \{ N \subseteq F \mid M \subseteq N \subsetneq F, \ \mathsf{br}_i(M) = \mathsf{br}_i(N) \text{ for } 0 \leq \forall i \leq d + r - 1 \}.$$

### **Proposition 3.18**

Suppose that  $(A, \mathfrak{m})$  is a Noetherian local domain. Then

$$\widetilde{M} \in \mathcal{S}$$
 and  $N \subseteq \widetilde{M}$  for  $\forall N \in \mathcal{S}$ .

Hence  $\widetilde{M}$  is the largest A-submodule N of F s.t.

•  $M \subset N \subset F$ ,

• 
$$\operatorname{br}_i(M) = \operatorname{br}_i(N)$$
 for  $0 \le \forall i \le d + r - 1$ .

# Main Results

# Setting 4.1

- (A,  $\mathfrak{m}$ ) a two-dimensional RLR,  $|A/\mathfrak{m}| = \infty$
- $M \neq (0)$  a finitely generated torsion-free A-module

• 
$$(-)^* = \operatorname{Hom}_A(-, A)$$

• 
$$F = M^{**} = A^{\oplus r}$$
 s.t.  $\ell_A(F/M) < \infty$ 

•  $\mathcal{R}(M)$  the Rees algebra of M

• 
$$\mathfrak{M} = \mathfrak{mR}(M) + \mathcal{R}(M)_+$$

• Proj  $\mathcal{R}(M) = \{P \in \operatorname{Spec} \mathcal{R}(M) \mid P \text{ is a graded ideal}, P \not\supseteq \mathcal{R}(M)_+\}$ 

Note that dim  $\mathcal{R}(M) = r + 2$  and

$$\overline{M^n} = \left(\overline{M}\right)^n$$

for  $\forall n \geq 0$ .

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ● ● ● ● ● ●

| Introduction | Preliminaries | Ratliff–Rush closure of modules | Main Results | Application | References |
|--------------|---------------|---------------------------------|--------------|-------------|------------|
|              |               |                                 |              |             |            |
| The main     | result of my  | talk is stated as follows.      |              |             |            |
| Theorem      | 4 2           |                                 |              |             |            |

TFAF.

- (1)  $\widetilde{M} = \overline{M}$ .
- (2)  $\widetilde{M^n} = \overline{M^n}$  for  $\forall n > 0$ .
- (3)  $M^n = \overline{M^n}$  for  $\exists n > 0$ .
- (4)  $M^n = \overline{M^n}$  for  $\forall n \gg 0$ .
- (5)  $\operatorname{Proj} \mathcal{R}(M)$  is a normal scheme.
- (6)  $\mathcal{R}(M)_P$  is normal for  $\forall P \in \operatorname{Spec} \mathcal{R}(M) \setminus \{\mathfrak{M}\}.$

When this is the case,  $\mathcal{R}(M)$  has FLC,  $H^1_{\mathfrak{M}}(\mathcal{R}(M)) \cong \mathcal{R}(\overline{M})/\mathcal{R}(M)$ , and

$$\mathcal{R}(M)$$
 is  $CM \iff \overline{M} = M$ .

э

## **Proof of Theorem 4.2**

(1) 
$$\Rightarrow$$
 (4) Note that  $M^n = (\widetilde{M})^n$  for  $\forall n \gg 0$ . Then  
$$M^n = (\widetilde{M})^n = (\overline{M})^n = \overline{M^n}.$$

(4)  $\Rightarrow$  (3) Obvious. (3)  $\Rightarrow$  (1) Suppose  $M^n = \overline{M^n} = (\overline{M})^n$  for  $\exists n > 0$ . Then  $(\overline{M})^{n+1} = M^{n+1}$ . Therefore

$$\overline{M} \subseteq M^{n+1} :_F (\overline{M})^n = M^{n+1} :_F M^n \subseteq \widetilde{M} \subseteq \overline{M}$$

which yields  $\widetilde{M} = \overline{M}$ . (1)  $\Rightarrow$  (2) We have  $(\widetilde{M})^n = (\overline{M})^n$  for  $\forall n > 0$ . Then  $\overline{M^n} = (\overline{M})^n = (\widetilde{M})^n \subseteq \widetilde{M^n} \subseteq \overline{M^n}$ 

as desired.

 $(2) \Rightarrow (1)$  Obvious.

ヨト イヨト ヨー わくや

25 / 37

| Introduction | Preliminaries | Ratliff–Rush closure of modules | Main Results | Application | References |
|--------------|---------------|---------------------------------|--------------|-------------|------------|
|              |               |                                 |              |             |            |

### Theorem 4.2

## TFAE.

- (1)  $\widetilde{M} = \overline{M}$ .
- (2)  $\widetilde{M^n} = \overline{M^n}$  for  $\forall n > 0$ .
- (3)  $M^n = \overline{M^n}$  for  $\exists n > 0$ .
- (4)  $M^n = \overline{M^n}$  for  $\forall n \gg 0$ .
- (5) Proj  $\mathcal{R}(M)$  is a normal scheme.
- (6)  $\mathcal{R}(M)_P$  is normal for  $\forall P \in \operatorname{Spec} \mathcal{R}(M) \setminus \{\mathfrak{M}\}.$

When this is the case,  $\mathcal{R}(M)$  has FLC,  $H^1_{\mathfrak{M}}(\mathcal{R}(M)) \cong \mathcal{R}(\overline{M})/\mathcal{R}(M)$ , and

$$\mathcal{R}(M)$$
 is  $CM \iff \overline{M} = M$ .

26 / 37

Introduction Preliminaries Ratliff–Rush closure of modules Main Results Application References (4)  $\Rightarrow$  (6) Suppose  $M^n = \overline{M^n}$  for  $\forall n \gg 0$ . Let  $C = \mathcal{R}(\overline{M})/\mathcal{R}(M)$ . Then  $C_n = (0)$  for  $n \gg 0$ , so that C is finitely graded. Therefore  $\mathfrak{a}^m \cdot C = (0), \quad \mathfrak{m}^m \cdot C = (0)$ for  $\exists m > 0$ . Thus  $\mathfrak{M} \subseteq \sqrt{(0) : C}$  and hence  $\operatorname{Supp}_{\mathcal{R}(M)} C \subseteq \{\mathfrak{M}\}.$ 

Consequently, for  $\forall P \in \text{Spec } \mathcal{R}(M) \setminus \{\mathfrak{M}\}$ ,  $\mathcal{R}(M)_P = \mathcal{R}(\overline{M})_P$  is normal. (6)  $\Rightarrow$  (5) Obvious. (5)  $\Rightarrow$  (4) Let  $C = \mathcal{R}(\overline{M})/\mathcal{R}(M)$ . We can check that

$$\mathfrak{a} \subseteq \sqrt{(0):C}$$

whence *C* is finitely graded. Hence  $M^n = \overline{M^n}$  for  $\forall n \gg 0$ .

| Introduction | Preliminaries | Ratliff–Rush closure of modules | Main Results | Application | References |
|--------------|---------------|---------------------------------|--------------|-------------|------------|
|              |               |                                 |              |             |            |

Choose a parameter module L in F s.t. L is a reduction of  $\overline{M}$ . Then

$$(\overline{M})^2 = L \cdot \overline{M}$$

so that  $\mathcal{R}(\overline{M})$  is a CM ring. Therefore

 $\mathrm{H}^{1}_{\mathfrak{M}}(\mathcal{R}(M))\cong \mathcal{R}(\overline{M})/\mathcal{R}(M), \ \, \mathrm{H}^{i}_{\mathfrak{M}}(\mathcal{R}(M))=(0) \ \, \text{for} \ \, \forall i\neq 1,r+2.$ 

Hence  $\mathcal{R}(M)$  has FLC and

$$\mathcal{R}(M) \text{ is a CM ring} \iff H^{1}_{\mathfrak{M}}(\mathcal{R}(M)) = (0)$$
$$\iff (\overline{M})^{n} = M^{n} \text{ for } \forall n > 0$$
$$\iff \overline{M} = M$$

which complete the proof.

| Introduction Preliminaries | Ratliff–Rush closure of modules | Main Results | Application | References |
|----------------------------|---------------------------------|--------------|-------------|------------|
|                            |                                 |              |             |            |

# **Corollary 4.3**

Suppose that  $M \neq F$  and  $\widetilde{M} = \overline{M}$ . Then

$$\mathsf{br}_1(M) = \mathsf{br}_0(M) - \ell_{\mathcal{A}}(F/\overline{M}), \;\; \mathsf{br}_i(M) = 0 \;\; \textit{for} \;\; 2 \leq orall i \leq r+1$$

and

$$\ell_{\mathcal{A}}(\mathcal{F}^{n+1}/(\overline{M})^{n+1}) = \mathsf{br}_0(M) \cdot \binom{n+r+1}{r+1} - \mathsf{br}_1(M) \cdot \binom{n+r}{r} \quad \textit{for} \quad \forall n \ge 0.$$

| Introduction | Preliminaries | Ratliff–Rush closure of modules | Main Results | Application | References |
|--------------|---------------|---------------------------------|--------------|-------------|------------|
|              |               |                                 |              |             |            |
| Applicati    | ion           |                                 |              |             |            |

We maintain the notation as in Setting 4.1.

Theorem 5.1

### TFAE.

- (1)  $\mathcal{R}(M)$  is a Buchsbaum ring and  $\widetilde{M} = \overline{M}$ .
- (2)  $\mathcal{R}(M)$  is a Buchsbaum ring and Proj  $\mathcal{R}(M)$  is normal.

(3) 
$$\mathfrak{m}\overline{M} \subseteq M$$
 and  $M \cdot \overline{M} = M^2$ .

When this is the case,

$$\mathsf{H}^1_{\mathfrak{M}}(\mathcal{R}(M)) = \left[\mathsf{H}^1_{\mathfrak{M}}(\mathcal{R}(M))\right]_1 \cong \overline{M}/M$$

and  $\overline{M^n} = M^n$  for  $\forall n \ge 2$ .

| Introduction           | Preliminaries                                                                  | Ratliff–Rush closure of modules | Main Results | Application | References |  |  |
|------------------------|--------------------------------------------------------------------------------|---------------------------------|--------------|-------------|------------|--|--|
|                        |                                                                                |                                 |              |             |            |  |  |
|                        |                                                                                |                                 |              |             |            |  |  |
| Example                | 5.2                                                                            |                                 |              |             |            |  |  |
| Let $A = k$            | [[X, Y]]. Set                                                                  | :                               |              |             |            |  |  |
|                        | $I = (X^4, X^3Y^2, XY^6, Y^8)$ and $M = I \oplus I \subseteq F = A \oplus A$ . |                                 |              |             |            |  |  |
| Then $\widetilde{M}$ : | $=\overline{M}$ , but $\mathcal{R}($                                           | M) is not Buchsbaum.            |              |             |            |  |  |

### Example 5.3

Let A = k[[X, Y]]. Set

$$I_1 = (X^6, X^5Y^2, X^4Y^3, X^3Y^4, XY^7, Y^8), \quad I_2 = (X^5, X^4Y^2, X^3Y^3, XY^6, Y^7)$$

and

$$M = I_1 \oplus I_2 \subseteq F = A \oplus A.$$

Then  $\widetilde{M} = \overline{M}$  and  $\mathcal{R}(M)$  is a Buchsbaum ring.

< 一型

э

| Introduction | Preliminaries | Ratliff–Rush closure of modules | Main Results | Application | References |
|--------------|---------------|---------------------------------|--------------|-------------|------------|
|              |               |                                 |              |             |            |

### Corollary 5.4

Suppose that  $\mathcal{R}(M)$  is a Buchsbaum ring and  $\widetilde{M} = \overline{M}$ . Then, for  $\forall I \subsetneq A$  an ideal of A s.t.  $\sqrt{I} = \mathfrak{m}$  and  $\overline{I} = I$ ,

 $\mathcal{R}(I \cdot M)$  is a Buchsbaum ring.

In particular,  $\mathcal{R}(\mathfrak{m}^{\ell}M)$  is a Buchsbaum ring for  $\forall \ell \geq 0$ .

| Introduction | Preliminaries | Ratliff–Rush closure of modules | Main Results | Application | References |
|--------------|---------------|---------------------------------|--------------|-------------|------------|
|              |               |                                 |              |             |            |

### **Corollary 5.5**

Let  $M_1, M_2 \neq (0)$  be finitely generated torsion-free A-modules. We set

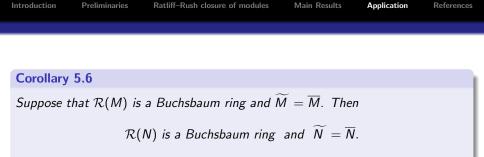
$$F_1 = (M_1)^{**}, \ F_2 = (M_2)^{**}$$

and

$$M = M_1 \oplus M_2 \subseteq F = F_1 \oplus F_2.$$

Then TFAE.

 R(M) is a Buchsbaum ring and M = M.
 R(M<sub>i</sub>) is a Buchsbaum ring, M<sub>i</sub> = M<sub>i</sub> (i = 1, 2), and M<sub>1</sub> · M<sub>2</sub> = M<sub>1</sub> · M<sub>2</sub> = M<sub>1</sub> · M<sub>2</sub>.



for all direct summand N of M.

### **Corollary 5.7**

Suppose that  $\mathcal{R}(M)$  is a Buchsbaum ring and  $\widetilde{M} = \overline{M}$ . Then

 $\mathcal{R}(M^{\oplus \ell})$  is a Buchsbaum ring

34 / 37

for  $\forall \ell > 0$ .

| Introduction | Preliminaries | Ratliff–Rush closure of modules | Main Results | Application | References |
|--------------|---------------|---------------------------------|--------------|-------------|------------|
|              |               |                                 |              |             |            |

We set

$$\mathcal{F}(M) = A/\mathfrak{m} \otimes_A \mathcal{R}(M) \cong \mathcal{R}(M)/\mathfrak{m}\mathcal{R}(M)$$

and call it the fiber cone of M.

Note that

$$\dim \mathcal{F}(M) = r + 1.$$

Theorem 5.8

Suppose that  $\mathcal{R}(M)$  is a Buchsbaum ring and  $\widetilde{M} = \overline{M}$ . Then

 $\mathcal{F}(M)$  is a Buchsbaum ring.

| Introduction | Preliminaries | Ratliff–Rush closure of modules | Main Results | Application | References |
|--------------|---------------|---------------------------------|--------------|-------------|------------|
|              |               |                                 |              |             |            |

# Thank you so much for your attention.

| Introduction | Preliminaries | Ratliff–Rush closure of modules | Main Results | Application | References |
|--------------|---------------|---------------------------------|--------------|-------------|------------|
|              |               |                                 |              |             |            |
| Referenc     | °es           |                                 |              |             |            |

- [1] D. A. BUCHSBAUM AND D. S. RIM. A generalized Koszul complex. II. Depth and multiplicity, Trans. Amer. Math. Soc., 111 (1964), 197-224.
- S. GOTO AND N. MATSUOKA, The Rees algebras of ideals in two-dimensional regular local [2] rings, The Proceedings of the 27-th Symposium on Commutative Algebra, (2006) 81–89.
- [3] F. HAYASAKA AND E. HYRY, A note on the Buchsbaum-Rim multiplicity of a parameter module, Proc. Amer. Math. Soc., 138 (2010), 545-551.
- [4] W. HEINZER, B. JOHNSTON, D. LANTZ, AND K. SHAH, Coefficient ideals in and blowups of a commutative Noetherian domain, J. Algebra, 162 (1993), 355-391.
- [5] V. KODIYALAM, Integrally closed modules over two-dimensional regular local rings, Trans. Amer. Math. Soc., 347 (1995), 3551-3573.
- J.-C. LIU, Ratliff-Rush closures and coefficient modules, J. Algebra, 201 (1998), 584-603. [6]
- [7] N. MATSUOKA, Ratliff-Rush closure of certain two-dimensional monomial ideals and Buchsbaumness of their Rees algebras, The Proceedings of the 26-th Symposium on Commutative Algebra, (2005) 19-28.

3

イロト イポト イヨト イヨト