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Introduction

Throughout my talk

A a Noetherian ring

I , J ideals of A

Ĩ =
∪
ℓ≥0

[
I ℓ+1 :A I ℓ

]
the Ratliff–Rush closure of I

R(I ) = A[It] ⊆ A[t] the Rees algebra of I

Note that

I ⊆ Ĩ and Ĩ · J̃ ⊆ ĨJ

Ĩ ⊆ I , if gradeA I > 0

If J ⊆ I and J is a reduction of I , then J̃ ⊆ Ĩ .
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Set
ProjR(I ) = {P ∈ SpecR(I ) | P is a graded ideal, P ⊉ R(I )+}.

Theorem 1.1 (Goto-Matsuoka, 2005)

Let (A,m) be a two-dimensional RLR,
√
I = m. Then TFAE.

(1) Ĩ = I .

(2) Ĩ n = I n for ∀n > 0.

(3) I n = I n for ∃n > 0.

(4) I n = I n for ∀n ≫ 0.

(5) ProjR(I ) is a normal scheme.

(6) R(I )P is normal for ∀P ∈ SpecR(I ) \ {M}, where M = mR(I ) +R(I )+.

When this is the case, R(I ) has FLC, H1
M(R(I )) ∼= R(I )/R(I ), and

R(I ) is CM ⇐⇒ I = I .
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Question 1.2

Can we generalize Theorem 1.1 to the case of modules?
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Preliminaries

Setting 2.1

A a Noetherian ring

M a finitely generated A-module

F = A⊕r (r > 0) s.t. M ⊆ F

Look at the diagram

SymA(M)
∃1 Sym(i)// SymA(F ) = A[t1, t2, . . . , tr ] =: S

M

i

OO

i // F

i

OO
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The Rees algebra R(M) of M is defined by

R(M) = Im(Sym(i)) ⊆ S = A[t1, t2, . . . , tr ]

=
⊕
n≥0

Mn.

Definition 2.2

For ∀n ≥ 0, we define

Mn =
(
R(M)

S
)
n
⊆ Sn = F n

and call it the integral closure of Mn.
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Proposition 2.3

For ∀n ≥ 0, we have

Mn =
(
(MS)n

)
n
.

In particular, M =
(
MS

)
1
⊆ F .

More precisely, x ∈ M satisfies

xn + c1x
n−1 + · · ·+ cn = 0 in S

where n > 0, ci ∈ M i for 1 ≤ ∀i ≤ n.
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Lemma 2.4

Suppose that A is a Noetherian domain and ℓA(F/M) < ∞. Then
Q(R(M)) = Q(S). Moreover, if A is a normal domain, then

R(M)
Q(R(M))

= R(M)
S

Proof.

Look at the diagram

Q(A)⊗A SymA(M)
∼= // Q(A)⊗A S

SymA(M)

OO

Sym(i) // S

OO

We get
0 → t(SymA(M)) → SymA(M) → R(M) → 0

which yields

Q(A)⊗A S ∼= Q(A)⊗A SymA(M) ∼= Q(A)⊗A R(M).
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Proposition 2.5

Suppose that A is a normal domain and ℓA(F/M) < ∞. Let G be a finitely
generated free A-module s.t. 0 → M → G is exact. Then

R(M)
S ∼= R(M)

T

where T = SymA(G ).
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Ratliff–Rush closure of modules

Setting 3.1

A a Noetherian ring

M ̸= (0) a finitely generated A-module

F = A⊕r (r > 0) s.t. M ⊆ F

R(M) = Im(SymA(M) −→ SymA(F )) ⊆ SymA(F )

We set a = R(M)+ =
⊕

n>0 M
n, S = SymA(F ), and

R̃(M)
S

:= ε−1
(
H0

a(S/R(M))
)
⊆ S

where ε : S → S/R(M).
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Definition 3.2

For ∀n ≥ 0, we define

M̃n =

(
R̃(M)

S
)

n

⊆ Sn = F n

and call it the Ratliff–Rush closure of Mn.

Definition 3.3 (Liu, 1998)

Suppose that A is a Noetherian domain. Then M̃ is defined to be the largest
A-submodule N of F satisfying

M ⊆ N ⊆ F ,

Mn = Nn for ∀n ≫ 0.

Remark 3.4

These definitions coincide, when A is a Noetherian domain.
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Proposition 3.5

For ∀n ≥ 0, we have

M̃n =
∪
ℓ>0

[
(Mn)ℓ+1 :F n (Mn)ℓ

]
=

(
(̃MS)n

)
n
.

In particular

M̃ =
∪
ℓ>0

[
Mℓ+1 :F Mℓ

]
=

(
M̃S

)
1
.

Corollary 3.6

Suppose that A is a Noetherian domain. Then

M̃n ⊆ Mn ⊆ F n

for ∀n ≥ 0. Hence

R(M) ⊆ R̃(M)
S

⊆ R(M)
S
⊆ S .
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Proposition 3.7

Suppose that A is a normal domain and ℓA(F/M) < ∞. Let G be a finitely
generated free A-module s.t. 0 → M → G is exact. Then

R̃(M)
S ∼= R̃(M)

T

where T = SymA(G ).
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Definition 3.8 (Buchsbaum-Rim, 1964, Hayasaka-Hyry, 2010)

Suppose that (A,m) is a Noetherian local ring with d = dimA. Then M is called
a parameter module in F , if

ℓA(F/M) < ∞,

M ⊆ mF , and

µA(M) = d + r − 1.

Proposition 3.9

Suppose that (A,m) is a CM local ring with d = dimA > 0. Let M be a
parameter module in F . Then

M̃ = M.
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Example 3.10

Let A = k[[X ,Y ]]. Set

M =

⟨(
X
0

)
,

(
Y
X

)
,

(
0
Y

)⟩
⊆ F = A⊕ A.

Then M is a parameter module in F and M̃ = M.

Example 3.11

Let R = k[[X ,Y ,Z ,W ]]. Set

A = R/(X ,Y ) ∩ (Z ,W ), Q = (X − Z ,Y −W )A.

Then Q̃ = Q.

Naoki Taniguchi (Waseda University) On Ratliff–Rush closure of modules November 17, 2017 16 / 37



Introduction Preliminaries Ratliff–Rush closure of modules Main Results Application References

Proposition 3.12

Suppose that L = Ax1 + Ax2 + · · ·+ Axℓ (⊆ M) is a reduction of M. Then

M̃ =
∪
n>0

[
Mn+1 :F (Ax1

n + Ax2
n + · · ·+ Axℓ

n)
]
.

Corollary 3.13

If L is a reduction of M, then
L̃ ⊆ M̃ .
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Remark 3.14

The implication

L ⊆ M =⇒ L̃ ⊆ M̃

does not hold in general.

Example 3.15 (Heinzer-Johnston-Lantz-Shah, 1993)

We consider

A = k[[t3, t4]] ⊆ k[[t]], I = (t8), and J = (t11, t12).

Then J ⊆ I , but J̃ ⊈ Ĩ .
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The following is the key in our argument.

Proposition 3.16

Suppose that A is a Noetherian domain. Then the following assertions hold.

(1) M̃n ⊆ Mn for ∀n ≫ 0.

(2) Let N be an A-submodule of F s.t. M ⊆ N. Then TFAE.

(i) N ⊆ M̃ .
(ii) Mℓ = Nℓ for ∃ ℓ > 0.
(iii) Mn = Nn for ∀n ≫ 0.

(iv) M̃ = Ñ .

(3)
˜̃
M = M̃ .
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Let us note the following.

Lemma 3.17

Suppose that (A,m) is a Noetherian local ring. If M = F , then M = F .

In particular, if M ̸= F and A is domain, then M̃ ̸= F .
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In what follows, we assume

(A,m) a Noetherian local ring with d = dimA

F = A⊕r (r > 0)

(0) ̸= M ⊊ F s.t. ℓA(F/M) < ∞

Then ∃ bri (M) ∈ Z (0 ≤ i ≤ d + r − 1) s.t.

ℓA(F
n+1/Mn+1) =

d+r−1∑
i=0

(−1)i · bri (M) ·
(
n + d + r − i − 1

d + r − 2

)
for ∀n ≫ 0.

The integer bri (M) is called the i-th Buchsbaum–Rim coefficient of M.
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Set

S = {N ⊆ F | M ⊆ N ⊊ F , bri (M) = bri (N) for 0 ≤ ∀i ≤ d + r − 1}.

Proposition 3.18

Suppose that (A,m) is a Noetherian local domain. Then

M̃ ∈ S and N ⊆ M̃ for ∀N ∈ S.

Hence M̃ is the largest A-submodule N of F s.t.

M ⊆ N ⊊ F ,

bri (M) = bri (N) for 0 ≤ ∀i ≤ d + r − 1.
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Main Results

Setting 4.1

(A,m) a two-dimensional RLR, |A/m| = ∞

M ̸= (0) a finitely generated torsion-free A-module

(−)∗ = HomA(−,A)

F = M∗∗ = A⊕r s.t. ℓA(F/M) < ∞

R(M) the Rees algebra of M

M = mR(M) +R(M)+

ProjR(M) = {P ∈ SpecR(M) | P is a graded ideal, P ⊉ R(M)+}

Note that dimR(M) = r + 2 and

Mn =
(
M
)n

for ∀n ≥ 0.
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The main result of my talk is stated as follows.

Theorem 4.2

TFAE.

(1) M̃ = M.

(2) M̃n = Mn for ∀n > 0.

(3) Mn = Mn for ∃n > 0.

(4) Mn = Mn for ∀n ≫ 0.

(5) ProjR(M) is a normal scheme.

(6) R(M)P is normal for ∀P ∈ SpecR(M) \ {M}.

When this is the case, R(M) has FLC, H1
M(R(M)) ∼= R(M)/R(M), and

R(M) is CM ⇐⇒ M = M.
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Proof of Theorem 4.2

(1) ⇒ (4) Note that Mn = (M̃ )n for ∀n ≫ 0. Then

Mn = (M̃ )n = (M)n = Mn.

(4) ⇒ (3) Obvious.

(3) ⇒ (1) Suppose Mn = Mn = (M)n for ∃n > 0. Then (M)n+1 = Mn+1.
Therefore

M ⊆ Mn+1 :F (M)n = Mn+1 :F Mn ⊆ M̃ ⊆ M

which yields M̃ = M.

(1) ⇒ (2) We have (M̃ )n = (M)n for ∀n > 0. Then

Mn = (M)n = (M̃ )n ⊆ M̃n ⊆ Mn

as desired.

(2) ⇒ (1) Obvious.
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Theorem 4.2

TFAE.

(1) M̃ = M.

(2) M̃n = Mn for ∀n > 0.

(3) Mn = Mn for ∃n > 0.

(4) Mn = Mn for ∀n ≫ 0.

(5) ProjR(M) is a normal scheme.

(6) R(M)P is normal for ∀P ∈ SpecR(M) \ {M}.

When this is the case, R(M) has FLC, H1
M(R(M)) ∼= R(M)/R(M), and

R(M) is CM ⇐⇒ M = M.
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(4) ⇒ (6) Suppose Mn = Mn for ∀n ≫ 0. Let C = R(M)/R(M). Then
Cn = (0) for n ≫ 0, so that C is finitely graded. Therefore

am · C = (0), mm · C = (0)

for ∃ m > 0. Thus M ⊆
√

(0) : C and hence

SuppR(M) C ⊆ {M}.

Consequently, for ∀P ∈ SpecR(M) \ {M}, R(M)P = R(M)P is normal.

(6) ⇒ (5) Obvious.

(5) ⇒ (4) Let C = R(M)/R(M). We can check that

a ⊆
√
(0) : C

whence C is finitely graded. Hence Mn = Mn for ∀n ≫ 0.

Naoki Taniguchi (Waseda University) On Ratliff–Rush closure of modules November 17, 2017 27 / 37



Introduction Preliminaries Ratliff–Rush closure of modules Main Results Application References

Choose a parameter module L in F s.t. L is a reduction of M. Then

(M)2 = L ·M

so that R(M) is a CM ring. Therefore

H1
M(R(M)) ∼= R(M)/R(M), Hi

M(R(M)) = (0) for ∀i ̸= 1, r + 2.

Hence R(M) has FLC and

R(M) is a CM ring ⇐⇒ H1
M(R(M)) = (0)

⇐⇒ (M)n = Mn for ∀n > 0

⇐⇒ M = M

which complete the proof.
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Corollary 4.3

Suppose that M ̸= F and M̃ = M. Then

br1(M) = br0(M)− ℓA(F/M), bri (M) = 0 for 2 ≤ ∀i ≤ r + 1

and

ℓA(F
n+1/(M)n+1) = br0(M) ·

(
n + r + 1

r + 1

)
− br1(M) ·

(
n + r

r

)
for ∀n ≥ 0.
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Application

We maintain the notation as in Setting 4.1.

Theorem 5.1

TFAE.

(1) R(M) is a Buchsbaum ring and M̃ = M.

(2) R(M) is a Buchsbaum ring and ProjR(M) is normal.

(3) mM ⊆ M and M ·M = M2.

When this is the case,

H1
M(R(M)) =

[
H1

M(R(M))
]
1
∼= M/M

and Mn = Mn for ∀n ≥ 2.
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Example 5.2

Let A = k[[X ,Y ]]. Set

I = (X 4,X 3Y 2,XY 6,Y 8) and M = I ⊕ I ⊆ F = A⊕ A.

Then M̃ = M, but R(M) is not Buchsbaum.

Example 5.3

Let A = k[[X ,Y ]]. Set

I1 = (X 6,X 5Y 2,X 4Y 3,X 3Y 4,XY 7,Y 8), I2 = (X 5,X 4Y 2,X 3Y 3,XY 6,Y 7)

and
M = I1 ⊕ I2 ⊆ F = A⊕ A.

Then M̃ = M and R(M) is a Buchsbaum ring.
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Corollary 5.4

Suppose that R(M) is a Buchsbaum ring and M̃ = M. Then, for ∀I ⊊ A an
ideal of A s.t.

√
I = m and I = I ,

R(I ·M) is a Buchsbaum ring.

In particular, R(mℓM) is a Buchsbaum ring for ∀ℓ ≥ 0.
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Corollary 5.5

Let M1,M2 ̸= (0) be finitely generated torsion-free A-modules. We set

F1 = (M1)
∗∗, F2 = (M2)

∗∗

and
M = M1 ⊕M2 ⊆ F = F1 ⊕ F2.

Then TFAE.

(1) R(M) is a Buchsbaum ring and M̃ = M.

(2) R(Mi ) is a Buchsbaum ring, M̃i = Mi (i = 1, 2), and

M1 ·M2 = M1 ·M2 = M1 ·M2.
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Corollary 5.6

Suppose that R(M) is a Buchsbaum ring and M̃ = M. Then

R(N) is a Buchsbaum ring and Ñ = N.

for all direct summand N of M.

Corollary 5.7

Suppose that R(M) is a Buchsbaum ring and M̃ = M. Then

R(M⊕ℓ) is a Buchsbaum ring

for ∀ℓ > 0.
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We set
F(M) = A/m⊗A R(M) ∼= R(M)/mR(M)

and call it the fiber cone of M.

Note that
dimF(M) = r + 1.

Theorem 5.8

Suppose that R(M) is a Buchsbaum ring and M̃ = M. Then

F(M) is a Buchsbaum ring.
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Thank you so much for your attention.
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